
Statistical Guarantees for Transformation Based Models with

Applications to Implicit Variational Inference

Sean Plummer

1∗
Shuang Zhou

2∗
Anirban Bhattacharya

1
David Dunson

3
Debdeep Pati

1

1Texas A&M University 2Arizona State University 3Duke University

Abstract

Transformation-based methods have been an
attractive approach in non-parametric infer-
ence for problems such as unconditional and
conditional density estimation due to their
unique hierarchical structure that models the
data as flexible transformation of a set of
common latent variables. More recently,
transformation-based models have been used
in variational inference (VI) to construct flex-
ible implicit families of variational distri-
butions. However, their use in both non-
parametric inference and variational infer-
ence lacks theoretical justification. We pro-
vide theoretical justification for the use of
non-linear latent variable models (NL-LVMs)
in non-parametric inference by showing that
the support of the transformation induced
prior in the space of densities is su�ciently
large in the L1 sense. We also show that,
when a Gaussian process (GP) prior is placed
on the transformation function, the poste-
rior concentrates at the optimal rate up to
a logarithmic factor. Adopting the flexibil-
ity demonstrated in the non-parametric set-
ting, we use the NL-LVM to construct an
implicit family of variational distributions,
deemed GP-IVI. We delineate su�cient con-
ditions under which GP-IVI achieves optimal
risk bounds and approximates the true pos-
terior in the sense of the Kullback–Leibler
divergence. To the best of our knowledge,
this is the first work on providing theoretical
guarantees for implicit variational inference.
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1 Introduction

Transformation-based models are a powerful class of
latent variable models, which rely on a hierarchical
generative structure for the data. In their simplest
form, these models have the following structure

y
i

= µ(x
i

) + ✏
i

, ✏
i

⇠ N(0,�2),

x
i

iid⇠ g, (1)

for i = 1, . . . , n, where y
i

2 R is a real-valued observed
variable, µ is the ‘transformation’ function, x

i

is a la-
tent (unobserved) variable underlying y

i

, g is a known
density of the latent data (e.g., uniform or standard
normal), and we include a Gaussian measurement er-
ror with variance �2. For simplicity in exposition, we
consider a very simple case to start but one can certain
include multivariate x

i

and y
i

and other elaborations.

Model (1) and its elaborations include many popular
methods in the literature. If we choose a Gaussian
process (GP) prior for the function µ, then we ob-
tain a type of GP Latent Variable Model (GP-LVM)
(Lawrence, 2004, 2005; Lawrence & Moore, 2007). We
can also obtain kernel mixtures as a special case; for
example, by choosing a discrete distribution for g. The
extremely popular Variational Auto-Encoder (VAE)
is based on choosing a deep neural network for µ,
and then obtaining a particular variational approxi-
mation relying on a separate encoder and decoder neu-
ral network (Kingma & Welling, 2013). Refer also to
the non-linear latent variable model (NL-LVM) frame-
work of (Kundu & Dunson, 2014) for a nonparametric
Bayesian perspective on models related to (1).

Providing theoretical justification for ‘transformation’
based models of the form in (1) rests on the answers
to the following two questions: 1) Can this framework
be used to approximate any density with an arbitrarily
high degree of accuracy? 2) Does the accuracy improve
with sample size as the optimal rate for density esti-
mation or conditional density estimation (given fixed
covariates) problems?

These types of questions have been answered elegantly
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for many nonparametric Bayes and frequentist den-
sity estimation methods, especially for the models con-
structed via model (1) with a discrete distribution g
of the latent variable. For example, Dirichlet process
mixture models (DPMMs) have been very widely ap-
plied (Escobar & West, 1995; Ferguson, 1973, 1974;
MacEachern, 1999; Müller et al., 1996) and studied
in terms of their optimality properties asymptotically
(Ghosal et al., 1999, 2000; Ghosal & van der Vaart,
2007; Kruijer et al., 2010).

When using a continuous distribution g, model (1)
leads to a specific class of continuous transformation-
based model such as the NL-LVM models. Here a GP
prior is a natural choice for the unknown transforma-
tion (Dasgupta et al., 2017; Kundu & Dunson, 2014;
Lenk, 1988, 1991; Tokdar, 2007; Tokdar et al., 2010).
These models can be written as Gaussian convolution
of a continuous mixing measure. Unfortunately the
algorithms developed for discrete mixing measures are
not readily adaptable to their continuous analogs. The
alternative approach uses Markov chain Monte Carlo
methods, which come with theoretical guarantees, but
su↵er from computational instability owing to a lack
of conjugacy. This instability propagates through the
posterior distribution of the unknown transformation
requiring expert parameter tuning and vigilance for
guaranteed performance. To mitigate some of these
issues associated with a full-blown MCMC, approxi-
mate Bayesian methods including the variational in-
ference (VI) are proposed (Titsias & Lawrence, 2010).
The success of VI depends largely on two things: 1)
the flexibility of the variational family and 2) the al-
gorithm used to perform the optimization.

Development of flexible variational families using
the reparametrization trick (Figurnov et al., 2018;
Jankowiak & Obermeyer, 2018; Kingma et al., 2015;
Kingma & Welling, 2013) have emerged as a power-
ful idea over the last decade and continues to flour-
ish, often in parallel with latest developments in gen-
erative deep-learning methods. While the overarch-
ing goal of this trick is to find unbiased estimates
of the gradient of the objective function (evidence
lower bound in variational inference), one cannot but
notice its connection with non-linear latent variable
methods. A similar idea is explored as Implicit vari-
ational inference (Huszár, 2017; Shi et al., 2017) to
construct an implicit distribution, a distribution that
cannot be analytically specified but can be sampled
from. Such a construction brings in certain compu-
tational challenges stemming from density ratio esti-
mation. More recently, implicit VI was extended to
semi-implicit VI (Molchanov et al., 2019; Titsias &
Ruiz, 2019; Yin & Zhou, 2018) which avoids density
ratio estimation by using a semi-implicit variational

distribution q
�

(✓) =
R
q{✓ | g

�

(u)}q(u)du where the
density q{z | g

�

(u)} corresponds to a transformation-
based model with transformation g

�

– typically taken
to be a neural network with parameters �. Although
VI approaches have shown significant improvements
in computational speed their theoretical properties are
largely a mystery.

Thus the aim of this work is to address one of the
fundamental questions in latent variable transforma-
tion methods, namely, under what conditions are these
methods “flexible” enough? The central idea is to rec-
ognize that such models can be written as Gaussian
convolution of a continuous mixing measure. Such a
construction serves as a flexible family for inference in
either the latent variable semi-parametric density es-
timation setting or density estimation using implicit
variational inference. The traditional approach to the
density estimation problem is through the use of dis-
crete mixtures, whose approximation properties have
been well-studied (Ghosal et al., 1999, 2000; Ghosal &
van der Vaart, 2007; Kruijer et al., 2010). However,
the well-known transformation based methods such as
GP-LVM and IVI, are based o↵ of continuous mixtures
rather than discrete ones. Unfortunately, the existing
tools for studying properties of these models for dis-
crete mixtures do not readily extend to the continu-
ous mixture case which requires di↵erent techniques
to quantify the accuracy of approximation. Because
of this, there has been, to the best of our knowledge,
no results pertaining to properties of continuous mix-
ture models in either the non-parametric or variational
settings. There are no results that specify for which
class of functions F these continuous mixture models
are capable of estimating the true data distribution
f0 2 F arbitrarily well. Similarly, there are no results
pertaining to risk bounds or convergence properties of
any implicit variational inference framework. The clos-
est related works in either case are those that address
these questions for discrete mixture models. Lastly, we
have chosen to exclude detailed empirical illustration,
but provide a sketch of the algorithm in the supple-
mentary material, as there is a relatively large body of
existing work delineating algorithms and demonstrat-
ing the empirical performance of these continuous mix-
ture models in both the non-parametric setting using
GP-LVM (Ferris et al., 2007; Lawrence, 2004, 2005;
Lawrence & Moore, 2007) and the variational setting
using IVI (Huszár, 2017; Molchanov et al., 2019; Shi
et al., 2017; Titsias & Ruiz, 2019; Yin & Zhou, 2018).

A summary of our contributions. Our results are the
first to provide a concrete theoretical framework for
transformation-based models widely used in Bayesian
inference and machine learning. By establishing a con-
nection between NL-LVM with implicit family of dis-
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tributions, we provide statistical guarantees for im-
plicit variational inference. Motivated by our find-
ings, transformation-based models have the potential
to provide machine learning with a rich class of implicit
variational inference methods that come with strong
theoretical guarantees.

We close the section by defining some notations in
§1.1 used throughout the paper. In §2 we present an
overview of the NL-LVM model as well as several prop-
erties of the model. In section §3 we discuss our two
main results for non-parameteric inference using NL-
LVM. In §4 we introduce GP-IVI. We then show that
that the KL divergence between the variational pos-
terior and the true posterior is stochastically bounded
and argue why this is optimal from a statistical per-
spective. Inspired by Yang et al. (2020), we addition-
ally present parameter risk bounds of a version of im-
plicit variational inference, which we term as ↵-GP-
IVI which is obtained by raising the likelihood to a
fractional power ↵ 2 (0, 1).

1.1 Notation

We denote the Lesbesgue measure on Rp by �. The
supremum norm and L1-norm are denoted by k·k1
and k·k1, respectively. For two density functions
p, q 2 F , let h denote the Hellinger distance defined
as h2(p, q) =

R
(p1/2 � q1/2)2d�. Denote the Kullbeck-

Leibler divergence between two probability densities
p and q with respect to the Lebesgue measure by
D(p||q) =

R
p log(p/q)d�. We define the additional

discrepancy measure V (p||q) =
R
p log2(p/q)d�, which

will be referred to as the V-divergence. For a set A we
use I

A

to denote its indicator function. We denote
the density of the normal distribution N(t; 0,�2I

d

)
by �

�

(t). We denote the convolution of f and g by
f ⇤ g(y) =

R
f(y � x)g(x)dx. Absolute continuity of q

with respect to p will be denoted q ⌧ p. We denote
the set of all probability densities f ⌧ � by F . The
support of a density f is denoted by supp(f). For a set
X , let C(X ) and C�(X ), � > 0 denote the spaces of
continuous functions and �-Hölder space, respectively.
We write ”-” for inequality up to a constant multiple.
For any a > 0 denote bac the largest integer that is no
greater than a.

2 A specific transformation-based

model

In this section, we focus on an NL-LVM model (Kundu
& Dunson, 2014) in which the response variables are
modeled as unknown functions (referred to as the
transfer function) of uniformly distributed latent vari-
ables with an additive Gaussian error. We start from

the model formulation and then present a general ap-
proximation result of NL-LVM model to the true den-
sity under mild regularity conditions. A review of the
necessary background material for this section can be
found in the supplementary file section S1.

2.1 The NL-LVM model

Suppose we have IID observations Y
i

2 R for i =
1, . . . , n with density f0 2 F , the set of all densities on
R absolutely continuous with respect to the Lebesgue
measure �. We consider a non-linear latent variable
model

Y
i

= µ(⌘
i

) + ✏
i

, ✏
i

⇠ N(0,�2), i = 1, . . . , n

µ ⇠ ⇧
µ

, � ⇠ ⇧
�

, ⌘
i

⇠ U(0, 1), (2)

where ⌘
i

’s are latent variables, µ 2 C[0, 1] is a transfer
function relating the latent variables to the observed
variables and ✏

i

is an idiosyncratic error. Marginaliz-
ing out the latent variable, we obtain the density of y
conditional on the transfer function µ and scale �

f(y;µ,�)
def
= f

µ,�

(y) =

Z 1

0
�
�

(y � µ(x))dx. (3)

Remark 2.1. While µ and ⌘ are not identifiable in
(2), our goal is to estimate f0 using f

µ,�

which is an
identifiable quantity itself. The flexibility of the in-
duced model is guaranteed via the GP prior over the
transformation function µ without the need to identify
the corresponding latent variable ⌘. The presence of
the latent variable ⌘ simply ensures flexibility of the
induced density and allows for straightforward compu-
tation via Gibbs sampler or variational techniques.

It is not immediately clear whether the class of den-
sities {f

µ,�

} encompasses a large subset of the den-
sity space. The following intuition relates the above
class with continuous convolutions which plays a key
role in studying theoretical properties for models re-
lated to NL-LVMs. Within the support of a continuous
density f0, its cumulative distribution function F0 is
strictly monotone and hence has an inverse F�1

0 satis-
fying F0{F�1

0 (t)} = t for all t 2 supp(f0). Now letting
µ0(x) = F�1

0 (x), one obtains f
µ0,�(y) = �

�

⇤ f0, the
convolution of f0 with a normal density having mean
0 and standard deviation �. This provides a way to
approximate f0 by the NL-LVM with optimal approx-
imation accuracy. We summarize the approximation
result in section 2.3.

Let �̃ denote the Lebesgue measure on [0, 1] and denote
the Borel sigma-field of R by B. For any measurable
function µ : [0, 1] ! R, let ⌫

µ

denote the induced
measure on (R,B), then, for any Borel measurable set
B, ⌫

µ

(B) = �̃(µ�1(B)). By the change of variable
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theorem for induced measures,
Z 1

0

��(y � µ(x))dx =

Z

��(y � t)d⌫µ(t), (4)

so that f
µ,�

in (3) can be expressed as a kernel mix-
ture form with mixing distribution ⌫

µ

. It turns out
that this mechanism of creating random distributions
is very general. Depending on the choice of µ, one can
create a large variety of mixing distributions based on
this specification. For example, if µ is a strictly mono-
tone function, then ⌫

µ

is absolutely continuous with
respect to the Lebesgue measure, while choosing µ to
be a step function, one obtains a discrete mixing dis-
tribution.

2.2 Assumptions on true data density f0

It is widely recognized that one needs certain smooth-
ness assumptions and tail conditions on the true den-
sity f0 to derive posterior convergence rates. We make
the following assumptions:

Assumption F1 We assume log f0 2 C� [0, 1]. Let
l
j

(x) = dj/dxj{log f0(x)} be the jth derivative for j =
1, . . . , r with r = b�c. For any � > 0, we assume that
there exists a constant L > 0 such that

|l
r

(x)� l
r

(y)|  L|x� y|��r, for all x 6= y. (5)

The smoothness assumption in the log scale will be
used to obtain an optimal approximation error of the
GP-transformation-based model to the true f0, pro-
viding a key piece in managing the KL-divergence be-
tween the true and the model for posterior inference.
Similar assumption on the local smoothness appeared
in Kruijer et al. (2010), while in our case a global
smoothness assumption is su�cient since f0 is assumed
to be compactly supported.

Assumption F2 We assume f0 is compactly sup-
ported on [0, 1], and that there exists some interval
[a, b] ⇢ [0, 1] such that f0 is non-decreasing on [0, a],
bounded away from 0 on [a, b] and non-increasing on
[b, 1].

Assumption F2 guarantees that for every � > 0, there
exists a constant C > 0 such that f0 ⇤ �

�

� Cf0 for
every � < �. Also see Ghosal et al. (1999) for similar
assumption in density estimation.

2.3 Approximation property

As mentioned above, the flexibility of f
µ,�

comes from
a large class of the induced density measure ⌫

µ

. Now
we quantify the approximation of f

µ,�

to the true f0
by utilizing its equivalent form as a convolution with a
Gaussian kernel. It is well known that the convolution
�
�

⇤ f0 can approximate f0 arbitrary closely as the

bandwidth � ! 0. For Hölder-smooth functions, the
order of approximation can be characterized in terms
of the smoothness. If f0 2 C� [0, 1] with �  2, the
standard Taylor series expansion guarantees that ||�

�

⇤
f0 � f0||1 = O(��). However, for � > 2, it requires
higher order kernels for the convolution to remain the
optimal error (Devroye, 1992; Wand & Jones, 1994).
Kruijer et al. (2010) proposed an iterative procedure
to construct a sequence of functions {f

j

}
j�0 by

f
j+1 = f0 �4

�

f
j

, 4
�

f
j

= �
�

⇤ f
j

� f
j

, j � 0. (6)

We define f
�

= f
j

with integer j such that
� 2 (2j, 2j + 2]. Under such construction, for
f0 2 C� [0, 1] the convolution �

�

⇤ f
�

preserves the
optimal error O(��) (Lemma 1 in Kruijer et al.
(2010)). We state a similar result in the following.

Proposition 2.1. For f0 2 C� [0, 1] with � 2 (2j, 2j+
2] satisfying Assumptions F1 and F2, for f

�

defined
as from the iterative procedure (6) we have

k�
�

⇤ f
�

� f0k1 = O(��),

and

�
�

⇤ f
�

(x) = f0(x)(1 +D(x)O(��)), (7)

where

D(x) =
rX

i=1

c
i

|l
j

(x)|
�
i + c

r+1,

for non-negative constants c
i

, i = 1, . . . , r + 1, and for
any x 2 [0, 1].

The proof can be found in the supplementary file sec-
tion S2.2. The ability to represent the model in terms
proportional to true density plays an important role
in bounding the KL-divergence between f

µ,�

and f0.

Remark 2.2. The approximation result can be ex-
tended to the isotropic �-Hölder space C� [0, 1]d under
similar regularity assumptions. The extended approxi-
mation result can be applied to more general cases.

3 Posterior inference for NL-LVM

Most of the existing literature on non-parametric
Bayesian approaches to the density estimation prob-
lem are centered around DP mixture priors (Fergu-
son, 1973, 1974), which are simply transformation-
based models with a discrete distribution for the latent
variables. On the other hand, the theoretical proper-
ties of continuous transformation-based models remain
largely unknown.

In this section, we provide theoretical results for pos-
terior inference of the transformation-based model for



Plummer, Zhou, Bhattacharya, Dunson, Pati

unconditioned density estimation in the context of NL-
LVM. Our results are two-fold: (1) We first show that
a large class of transfer function µ leads to L1 large
support of the space of densities induced by the NL-
LVM; (2) We obtain the optimal frequentist rate up
to a logarithmic factor under standard regularity con-
ditions on the true density using the transformation-
based approach with induced GP priors.

3.1 L1 large support

One can induce a prior ⇧ on F via the mapping f
µ,�

by
placing independent priors ⇧

µ

and ⇧
�

on C[0, 1] and
[0,1) respectively, as ⇧ = (⇧

µ

⌦ ⇧
�

) � f�1
µ,�

. Kundu
& Dunson (2014) assumes a Gaussian process prior
with squared exponential covariance kernel on µ and
an inverse-gamma prior on �2. Given the flexibility
of f

µ,�

upon the choices of µ, placing a prior on µ
supported on the space of continuous functions C[0, 1]
without further restrictions is convenient and Theorem
3.1 assures us that this specification leads to large L1

support on the space of densities.

Suppose the prior ⇧
µ

on µ has full sup-norm support
on C[0, 1] so that ⇧

µ

(kµ � µ⇤k1 < ✏) > 0 for any
✏ > 0 and µ⇤ 2 C[0, 1], and the prior ⇧

�

on � has full
support on [0,1). If f0 is compactly supported, so
that the quantile function µ0 2 C[0, 1], then it can be
shown that under mild conditions, the induced prior
⇧ assigns positive mass to arbitrarily small L1 neigh-
borhoods of any density f0. We summarize the above
discussion in the following theorem, with a proof pro-
vided in the section S2.3 of supplementary file.

Theorem 3.1. If ⇧
µ

has full sup-norm support on
C[0, 1] and ⇧

�

has full support on [0,1), then the L1

support of the induced prior ⇧ on F contains all den-
sities f0 which have a finite first moment and are non-
zero almost everywhere on their support.

Remark 3.1. The conditions of Theorem 3.1 are sat-
isfied for a wide range of Gaussian process priors on
µ (for example, a GP with a squared exponential or
Matérn covariance kernel).

Remark 3.2. When f0 has full support on R, the
quantile function µ0 is unbounded near 0 and 1, so that

kµ0k1 = 1. However,
R 1
0 |µ0(t)| dt =

R
R |x| f0(x)dx,

which implies that µ0 can be identified as an element
of L1[0, 1] if f0 has finite first moment. Since C[0, 1]
is dense in L1[0, 1], the previous conclusion regarding
L1 support can be shown to hold in the non-compact
case too.

3.2 Posterior contraction results

Gaussian process priors have been widely used in
non-parametric Bayesian inference as well as machine

learning due to their modeling advantages and proper
theoretical grounding (van der Vaart & van Zanten,
2007, 2008, 2009). Considering a Gaussian process
as the transfer function over the latent variable, the
transformation-based model essentially aligns with a
Gaussian process latent variable model (GP-LVM)
(Ferris et al., 2007; Lawrence, 2004, 2005; Lawrence
& Moore, 2007). Theoretical work of GP-LVM such
as Kundu & Dunson (2014) showed a KL large sup-
port of the induced prior process, and also showed
the posterior consistency to the true density func-
tion. However a straightforward description of the
space of densities induced by the proposed model is
not clear. Additionally, the posterior contraction rate
of the proposed model, an important property char-
acterizing how fast the posterior distribution concen-
trates around the truth, is still unknown for finite data.

We now present the posterior contraction result for
transformation-based model with NL-LVM. To that
end, we first review its definition, more details are
deferred to the supplementary file section S1. Given
independent and identically distributed observations
Y (n) = (Y1, . . . , Yn

) from a true density f0, a posterior
⇧

n

associated with a prior ⇧ on F is said to contract
at a rate ✏

n

, if for a distance metric d
n

on F ,

E
f0⇧n

{d
n

(f, f0) > M✏
n

| Y (n)} ! 0 (8)

for a suitably large integer M > 0. Unlike the treat-
ment in discrete mixture models (Ghosal & van der
Vaart, 2007) where a compactly supported density is
approximated with a discrete mixture of normals, the
main idea is to first approximate the true density f0 by
a Gaussian convolution with f

�

defined as in (6), then
allow the GP prior on the transfer function to appro-
priately concentrate around µ

�

, the inverse c.d.f. of
the defined f

�

. We first state our choices for the prior
distributions ⇧

µ

and ⇧
�

.

Assumption P1 We assume µ follows a centered
and rescaled Gaussian process denoted by GP(0, cA),
where A denotes the rescaled parameter, and assume
A has density g satisfying for a > 0,

C1a
p exp (�D1a log

q a)  g(a)

 C2a
p exp (�D2a log

q a).

Assumption P2 We assume � ⇠ IG(a
�

, b
�

).

Note that contrary to the usual conjugate choice of
an inverse-gamma prior for �2, we have assumed an
inverse-gamma prior for �. This enables one to have
slightly more prior mass near zero compared to an
inverse-gamma prior for �2, leading to the optimal
rate of posterior convergence. Refer also to Kruijer et
al. (2010) for a similar prior choice for the bandwidth
of the kernel in discrete location-scale mixture priors
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for densities.

Theorem 3.2. If f0 satisfies Assumptions F1 and F2
and the priors ⇧

µ

and ⇧
�

are as in Assumptions P1
and P2 respectively, the best obtainable rate of poste-
rior convergence relative to Hellinger metric h is

✏
n

= n� �
2�+1 (log n)t, (9)

where t = �(2 _ q)/(2� + 1) + 1.

We provide a sketch of the proof below, the full proof
is deferred to the supplementary file section S2.4. It
su�ces to check su�cient conditions (prior thickness,
sieve construction, entropy condition) for posterior
contraction result in Ghosal et al. (2000) (See Theo-
rem S1 in the supplementary file for details.) We first
verify the prior thickness condition. From Lemma 8 of
Ghosal & van der Vaart (2007), one has

Z
f0 log

✓
f0
f
µ,�

◆
i

 h2(f0, fµ,�)

✓
1 + log

����
f0
f
µ,�

����
1

◆
i

,

for i = 1, 2. By Lemma S3.4, we have
log kf0/fµ,�k1  kµ � µ

�

k1/�2, and by Lemma
S3.1 and Lemma S3.8, we bound h2(f0, fµ,�) - kµ �
µ
�

k1/�2 +O(�2�). Then we have

�
� 2 [�

n

, 2�
n

],kµ� µ
�

k1 - ��+1
n

 
⇢

{D(f0||fµ,�) - �2�
n

, V (f0||fµ,�) - �2�
n

}.

Under assumptions P1 and P2 the prior thickness is
guarantee by upper bounding ⇧

�
� 2 [�

n

, 2�
n

], kµ �
µ
�

k1 - ��+1
n

 
. We construct the sieve

F
n

= {f
µ,�

: µ 2 B
n

, l
n

< � < h
n

}.

where B
n

denotes the sieve for a GP prior on µ as de-
fined in van der Vaart & van Zanten (2009). Further
we calculate the entropy of F

n

; the logarithm of num-
ber of small balls in L1 norm with radius at least ✏

n

covering F
n

; by observing that for �2 > �1 > �2/2,

kfµ1,�1 � fµ2,�2k1 
✓

2

⇡

◆1/2 kµ1 � µ2k1
�1

+

3(�2 � �1)

�1
.

The entropy condition can be verified by applying
Lemma S3.9. Finally, the sieve compliment condition
is easily verified by combining the results on GP priors
in van der Vaart & van Zanten (2009) and tail prop-
erties of inverse-gamma distribution of �.

4 Gaussian Process Implicit

Variational Inference

Motivated by the flexibility we have demonstrated for
transformation-based models in the non-parametric

setting, we construct a flexible implicit variational
family of distributions, deemed Gaussian process im-
plicit variational inference (GP-IVI). We provide su�-
cient conditions under which GP-IVI achieves optimal
risk bounds and approximates the true posterior in
the sense of the Kullback–Leibler divergence. We be-
gin by defining common terminology used throughout
the section and defining GP-IVI.

4.1 Preliminaries

We consider IID observations Y
i

2 Rp, for i = 1, . . . , n.

Let P(n)
✓

be the distribution of the observations with

parameter ✓ 2 ⇥ ⇢ Rd that admits a density p
(n)
✓

relative to the Lebesgue measure. Let P
✓

denote the
prior distribution of ✓ that admits a density p

✓

over ⇥.
With a slight abuse of notation, we will use p(Y (n) | ✓)
to denote P(n)

✓

and its density function. We adopt a
frequentist framework and assume a true data generat-

ing distribution P(n)
✓

⇤ and a true parameter ✓⇤. Denote
the negative log prior U(✓) = � log p

✓

(✓) and the log-
likelihood ratio of Y

i

, for i = 1, . . . , n, by

`
i

(✓, ✓⇤) = log[p(Y
i

| ✓)/p(Y
i

| ✓⇤)]. (10)

We denote the first two moments of the log-likelihood
by

D(✓⇤||✓) = �E(n)
✓⇤ [`1(✓, ✓

⇤
)], µ2(✓

⇤||✓) = E(n)
✓⇤ [`1(✓, ✓

⇤
)

2
].

(11)

Lastly denote the appropriate neighborhood around
the true parameter ✓⇤,

Bn(✓
⇤, ") = {✓ | D[p(Y (n) | ✓⇤)kp(Y (n) | ✓)]  n"2,

V [p(Y (n) | ✓⇤)kp(Y (n) | ✓)]  n"2}. (12)

4.2 Gaussian Process Implicit Variational

Inference

Using the NL-LVM model, we can define the varia-
tional family of ✓ conditioned on the latent variable ⌘,
with parameters µ 2 C[0, 1] and � 2 (0,1),

q
µ,�

(✓
i

| ⌘
i

) = �
�

(✓
i

� µ(⌘
i

))

⌘
i

⇠ U(0, 1), i = 1, . . . , d.

Marginalizing over the latent ⌘ gives us the implict
variational distribution,

q
µ,�

(✓) =

Z 1

0
�
�

(✓ � µ(⌘))d⌘.

Together this defines the Gaussian process implict
variational inference (GP-IVI) family,

QGP =

⇢

qµ,�(✓) =

Z 1

0

��(✓ � µ(⌘))d⌘ | µ 2 C[0, 1], � > 0

�

.
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4.3 Approximation Quality of GP-IVI

In this section, we show that KL divergence between
the true posterior and its optimal GP-IVI approxima-
tion is O

p

(1). Using a simple example, we show that
without further assumptions this bound cannot be im-
proved. We begin the section with said example.

Consider the following one-dimensional Gaussian-
Gaussian Bayesian model for inference of an unknown
true mean ✓⇤ using the model

Y1, . . . , Yn

⇠ N(✓,�2), ✓ ⇠ N(µ0,�
2
0)

in which µ0,�0,� are all known. Let Y
n

, µ
n

,�2
n

denote
the sample mean, the posterior mean, and variance,
respectively. Straight forward calculations show

D
⇥
N(✓⇤, n�1�2)||N(µ

n

,�2
n

)
⇤
! �2

1, weakly.

Even in the simple case of a normal-normal model,
we see that the KL divergence between the true data
generating distribution and the true posterior does not
converge weakly to 0 but instead converges weakly to
a stochastically bounded random variable.

The O
p

(1) bound is achieved over a rather small sub-
family of GP-IVI. Define the restricted Gaussian fam-
ily

�
n

= {N(µ, ⌧2I
d

) | kµk2  M, 0  �
n

 ⌧  c
1/2
0 �

n

},

and let µ
f

denote the quantile function corresponding
to f 2 �

n

. We define the corresponding small band-
width convolution Gaussian (variational) family

Qn =

⇢

qµ,�(✓) | qµ,�(✓) =
Z 1

0

��(✓ � µf (⌘))d⌘, f 2 �n

�

.

The following assumptions are required to show the
O

p

(1) bound for the KL-divergence.

Assumption B1 The true parameter ✓⇤ satis-
fies k✓⇤k2  M .

Assumption B2 The variance bound �
n

satis-

fies 0  �
n

 n�1/2  c
1/2
0 �

n

, for all n � 1.

Assumption B3 The quantities D(✓⇤||✓) and
µ2(✓⇤||✓) are finite for all ✓ 2 Rd.

Assumption B4 The matrices of the second

derivatives, D(2)(✓⇤||✓), µ
(2)
2 (✓⇤||✓), U (2)(✓) exist on

Rd and satisfy for any ✓, ✓0 2 Rd,

s
max

⇣
D(2)(✓⇤||✓)�D(2)(✓⇤||✓0)

⌘
 Ck✓ � ✓0k↵1

2 ,

s
max

⇣
µ
(2)
2 (✓⇤||✓)� µ

(2)
2 (✓⇤||✓0)

⌘
 Ck✓ � ✓0k↵2

2 ,

s
max

⇣
U (2)(✓)� U (2)(✓0)

⌘
 Ck✓ � ✓0k↵3

2 ,

for some ↵1,↵2,↵3 > 0. Here s
max

denotes the
maximum eigenvalue of the matrix.

Assumption B5 D(✓⇤||✓) � Ck✓ � ✓⇤k2.

AssumptionB1 is needed so that a normal distribution
centered at the true parameter is contained in �

n

. As-
sumptions B2-B4 are technical assumptions needed in
order to achieve convergence of certain bounds used in
the proof. Assumption B5 is a standard identifiability
condition.

Theorem 4.1. Under assumptions B1 through B5
it holds that m⇤

n

(Q
n

) = min
q2Qn {D[q||p(· | Y n)]} is

bounded in probability with respect to the data gener-

ating distribution P(n)
✓

⇤ . Formally, given any " > 0,
there exists M

"

, N
"

> 0 such that for n � N
"

, we have

P(n)
✓

⇤ (m⇤
n

(Q
n

) > M
"

)  ".

Again, we provide a sketch of the proof below and
provide a full proof in section S2.5 of the supple-
mentary file. Under assumptions B1-B2, q

n

(✓) =
N(✓; ✓⇤,�2 + �2

n

) belongs to Q
n

. By definition,
m⇤

n

(Q
n

)  D[q
n

||p(· | Y (n))]. We show D[q
n

||p(· |
Y (n))] is O

p

(1) by showing that it is a sum of
O

p

(1) terms. Letting E
n

denote the expectation
with respect to q

n

, D[q
n

||p(· | Y (n))] can be bro-
ken into four parts E

n

[log q
n

], logm(Y (n)), E
n

[U(✓)],
and E

n

[
P

n

i=1 `i(✓, ✓
⇤)]. The first term E

n

[log q
n

] is

a constant, hence O
p

(1). Noting E(n)
✓

⇤ [m(Y (n))] =
1, an application of Markov’s inequality shows that
logm(Y (n)) is O

p

(1). Taking a (multivariate) Tay-
lor expansion of the functions U(✓), D(✓⇤||✓), and
µ2(✓⇤||✓) about ✓⇤ and applying assumption B4 and
B5 gives us the bounds

C
`

(�2 + �2
n

)  E
n

[D(✓⇤||✓)]  C
u

(�2 + �2
n

),

E
n

[µ2(✓
⇤||✓)]  C2(�

2 + �2
n

), (13)

E
n

[U(✓)]  C1(�
2 + �2

n

).

Markov’s inequality shows that U(✓) is O
p

(1). It re-
mains to show E

n

[
P

n

i=1 `i(✓, ✓
⇤)] is O

p

(1). Given

" > 0, choose � =
⇥
C2c0/("C`

)2
⇤1/2

. Applying Cheby-
chev’s and Jensen’s inequalities together with (13) we
have,

P(n)
✓⇤

(

En

"

n
X

i=1

`i(✓, ✓
⇤
)

#

 �Cu(1 + �)n(�2
+ �2

n)

)

 En[µ2(✓
⇤||✓)]

�2n (En[D(✓⇤||✓)])2
 C2

C`�2n�2
n
.

Finally by assumption B2 we have c0n  ��2
n

. Thus

P(n)
✓⇤

(

En

"

n
X

i=1

`i(✓, ✓
⇤
)

#

 �2Cu

⇣

1 +

⇥

C2c0/("C`)
2⇤1/2

⌘

)

 ",
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which shows E
n

[
P

n

i=1 `i(✓, ✓
⇤)] is O

p

(1). Combining
the four bounds completes the proof.

4.4 ↵-Variational Bayes Risk Bound for

GP-IVI

In developing risk bounds for parameter estimation, we
use a slight variation of the standard variational ob-
jective function for technical simplicity. ↵-variational
Bayes (↵-VB) (Yang et al., 2020) is a variational in-
ference framework that aims to minimize the KL di-
vergence between the variational density and the ↵-
fractional posterior (Bhattacharya et al., 2019), de-
fined as

P
↵

(✓ 2 B | Y (n)) =

R
B

[p(Y (n) | ✓)]↵p
✓

(✓)d✓R
⇥[p(Y

(n) | ✓)]↵p
✓

(✓)d✓
.

This leads to the following ↵-VB objective

bq(✓) = argmin

q2Q
D(q||p↵(· | Y (n)

)) = argmin

q
↵ (q), (14)

where

 (q) =

Z

⇥

q(✓) log



p(Y (n) | ✓⇤)
p(Y (n) | ✓)

�

d✓ � ↵�1D[q||p✓].

The variational expected log-likelihood ratio will be
hence referred to as the model-fit term and the re-
maining KL term will be hence referred to as the reg-
ularization term.

The importance of the ↵-VB framework comes from its
ability to upper bound the variational Bayesian risk,

the integral of r(✓, ✓⇤) = n�1D
↵

[p(n)
✓

||p(n)
✓

⇤ ] with re-
spect to bq(✓), by the variational objective  (q). Mini-
mizing the variational objective in turn minimizes the
variational risk.

Before proceeding we motivate the form of our opti-
mal risk bound. Consider preforming VI over the unre-
stricted class of densities over ⇥. Minimizing the ↵-VB
risk bound is achieved by balancing the two terms in
terms in  (q). By choosing

q(✓) =
p
✓

(✓)I
Bn(✓⇤

,")(✓)

P
✓

[B
n

(✓⇤, ")]
,

where B
n

(✓⇤, ") is defined in (12), the model-
fit term can be shown to be of order O

p

(n"2)
and the regularization term can be shown to be
↵�1 log[P

✓

{B
n

(✓⇤, ")}�1], a multiple of the local
Bayesian complexity. This is the optimal risk
bound for variational inference considering the class
of all distributions as the variational family (Yang
et al., 2020). We summarize this in the theorem below.

Theorem 4.2. Assume bq
µ,�

satisfies (14) and bq
µ,�

⌧
p
✓

. It holds with P(n)
✓

⇤ -probability at least 1 � 2/[(D �
1)2n(1 + n�2)"2] that,
Z

1

n
D(n)

↵ (✓, ✓⇤)bqµ,�(✓)d✓

 D↵

1� ↵
"2 +

1

n(1� ↵)
log

n

P✓ [Bn(✓
⇤, ")]

�1
o

+O(n�1
).

We provide a sketch of the proof below. The full proof
can be found in section S2.6 of the supplementary file.
Following our above motivation, we aim to show that
there is a member of the GP-IVI family Q

GP

such that
the model-fit term is of order O

p

(n"2) and the regu-
larization term is proportional to the local Bayesian
complexity. We leverage the approximation properties
from §3 to construct an approximation that achieve
this balance. We construct this variational distribu-
tion as follows.

Let the prior distribution of ✓ is given by the density
p
✓

(✓) = f0(✓) 2 C� [0, 1], � 2 (2j, 2j + 2]. Let f
�

= f
j

be the density constructed as in (6) satisfying k�
�

⇤
f
�

� f0k1 = O(��). Define the density function

ef�(t) =
f�(t)IBn(✓⇤,")

R

Bn(✓⇤,") f�(t)dt
(15)

and its corresponding variational density

q ef� ,�(✓) =

Z 1

�1
��(✓ � t) ef�(t)dt. (16)

The model-fit term is bounded in high probability
using a straight forward application of Chebychev’s
inequality. Using (7), we bound the regularization
term proportional to the local Bayesian complexity.
Combining these and using Theorem 3.2 of Yang et
al. (2020) finishes the proof.

Assumption A1 Prior density p
✓

satisfies
log[P

✓

{B
n

(✓⇤, ")}�1]  �n"2.

Remark 4.1. Let {p
✓

, ✓ 2 ⇥} be a parametric family
of densities. Assume for ✓, ✓1, ✓2, there exists ↵ > 0
such that D(✓⇤k✓) - k✓⇤�✓k2↵, µ2(✓⇤k✓) - k✓⇤�✓k2↵,
and k✓1 � ✓2k↵ - h(✓1, ✓2) - k✓1 � ✓2k↵. Then if
the prior measure possesses a density that is uniformly
bounded away from zero and infinity on ⇥, then As-
sumption A1 is satisfied. Assumptions of this form
are common in the literature; refer to pg 517 (Ghosal
et al., 2000).

Corollary 4.1. Suppose the prior density p
✓

satis-
fies Assumption A1 and bq satisfies (14). It holds with
probability tending to one as n ! 1 that,

⇢Z
h2[p(· | ✓)||p(· | ✓⇤)]bq

µ,�

(✓)d✓

�1/2

 O(n�1),
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demonstrating that the risk bound is parametric even
when a flexible class of variational approximation is
used.

5 Conclusion

To summarize, we have provided theoretical properties
of transformation-based models in non-parametric and
variational inferences in the context of NL-LVM. Fur-
ther work is needed to generalize some of our results
to higher dimensional models as several of the techni-
cal lemmas in the appendix hold only for dimension
d = 1. A natural follow-up to this work would be to
study the asymptotic distribution of the parameters of
interest or a finite dimensional functional of densities
arising from the estimates. These results would be in-
line with Bernstein-von Mises type theorems for the
GP-LVM and GP-IVI.
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S1 A brief introduction to nonparametric Bayes

S1.1 Posterior contraction in nonparametic setting

We first give a brief review of the contraction rate of a posterior distribution under a general nonparametric
regression setting. Given independently and identically distributed samples Y (n) generated from the true density

f
0

, a regular nonparametric model considers Yi | f
i.i.d.⇠ f(·) for some unknown density f 2 F , where F denotes

a suitable class of the density functions that are absolutely continuous with respect to the Lebesgue measure.
Assigning a nonparametric prior ⇧(·) over the set F and multiplying it with the likelihood denoted by P (Y (n) | f)
produces the posterior distribution ⇧n(· | Y (n)) defined as

⇧n(f 2 B | Y (n)) =

R

B
P (Y (n) | f)d⇧(f)

R

P (Y (n) | f)d⇧(f)
,

for any set B ⇢ F . As the posterior distribution is a random measure conditioning on the given data, we are
interested in studying frequentist properties of such posterior distribution such as the consistency and convergence
rate to the true data generating function f

0

. In particular, the convergence rate characterizes how fast a posterior
distribution concentrates on the true density f

0

as n increases, measured by the decreasing rate of the radius
of a neighborhood centered at the true f

0

that received posterior probability converging to 1. We define the
posterior distribution contracts at a rate ✏n to the true function f

0

with respect to certain metric d(·, ·) almost
surely under the true probability measure denoted by Ef0 , if

Ef0{⇧n(d(f, f0) > M✏n | Y (n))} ! 0, as n ! 1,

for some su�ciently large integer M > 0. Ghosal et al. (2000) derived a general approach to obtain the optimal
rate (up to a logarithmic factor) by verifying su�cient conditions regarding the prior measure and the considered
density space F . We now restate Theorem 2.1 of Ghosal et al. (2000).

Theorem S1. If there exist sequences ✏̄n,e✏n ! 0 with nmin{✏̄2n,e✏2n} ! 1 such that there exist constants
C

1

, C
2

, C
3

, C
4

> 0 and a sequence of sieve Fn ⇢ F so that,

(Entropy condition) logN(✏̄n,Fn, d)  C
1

n✏̄2n, (S1.1)

(Sieve condition) ⇧(Fc
n)  C

3

exp{�ne✏2n(C2

+ 4)}, (S1.2)

(Prior thickness condition) ⇧

✓

f :

Z

f
0

log
f
0

f
 e✏2n,

Z

f
0

log

✓

f
0

f

◆

2

 e✏2n
◆

� C
4

exp{�C
2

ne✏2n}. (S1.3)

then we have
Ef0{⇧n(d(f, f0) > M✏n | Y (n))} ! 0, a.s. as n ! 1,

for some su�ciently large constant M > 0.
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S1.2 Gaussian process and its reproducing kernel Hilbert space

We first review the definition of Gaussian process. A Gaussian process defined on a probability space (⌦,U , P )
is a collection of random variables {X(t), t 2 T} indexed by some arbitrary set T such that each finite
dimensional subset of random variables has a joint multivariate normal distribution with mean function
µ(t) = E(X(t)) and convaraince kernel function K(s, t) = Cov(X(s), X(t)). For some univaraite function
f : R ! R, we endow it with a Gaussian process prior denoted by f ⇠ GP (µ(·),K(·, ·)) with µ(x) = E(f(x))
and K(x, x0) = Cov(f(x), f(x0)) for any x, x0 2 R. The mean function reflects the expected center of realizations
and the covariance kernel function controls the smoothness of the realizations and correlations of the realization
across covariates. Refer to Rasmussen (2003) for a detailed introduction to Gaussian processes.

We now briefly recall the definition of the reproducing kernel Hilbert space of a Gaussian process prior; a
detailed review can be found in van der Vaart & van Zanten (2008). A Borel measurable random element W
with values in a separable Banach space (B, k·k) (e.g., C[0, 1]) is called Gaussian if the random variable b⇤W
is normally distributed for any element b⇤ 2 B⇤, the dual space of B. The reproducing kernel Hilbert space
(RKHS) H attached to a zero-mean Gaussian process W is defined as the completion of the linear space of
functions t 7! EW (t)H relative to the inner product

hEW (·)H
1

; EW (·)H
2

iH = EH
1

H
2

,

where H,H
1

and H
2

are finite linear combinations of the form
P

i aiW (si) with ai 2 R and si in the index set
of W .

Let W = (Wt : t 2 R) be a Gaussian process with squared exponential covariance kernel. The spectral measure
mw of W is absolutely continuous with respect to the Lebesgue measure � on R with the Radon-Nikodym
derivative given by

dmw

d�
(x) =

1

2⇡1/2
e�x2/4.

Define a scaled Gaussian process W a = (Wat : t 2 [0, 1]), viewed as a map in C[0, 1]. Let Ha denote the RKHS
of W a, with the corresponding norm k·kHa . The unit ball in the RKHS is denoted Ha

1

.

S2 Proofs of results in the main document

S2.1 Conventions

Equations in the main document are cited as (1), (2) etc., retaining their numbers, while new equations defined
in this document are numbered (S1), (S2) etc. In this section we collect the proof of Proposition 2.1, Theorems
3.1, 3.2, 4.1 and 4.2.

S2.2 Proof of Proposition 2.1

In this section we prove the results in Proposition 2.1.

Proposition 2.1 For f
0

2 C� [0, 1] with � 2 (2j, 2j + 2] satisfying Assumptions F1 and F2, for f� defined as
from the iterative procedure (6) we have

k�� ⇤ f� � f
0

k1 = O(��),

and

�� ⇤ f�(x) = f
0

(x)(1 +D(x)O(��)), (S2.1)

where

D(x) =
r
X

i=1

ci|lj(x)|
�
i + cr+1

,
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for non-negative constants ci, i = 1, . . . , r + 1, and for any x 2 [0, 1].

Proof. We now show equation (S2.1). Following the proof of Lemma 1 in Kruijer et al. (2010), for any
x, y 2 [0, 1],

log f
0

(y)  log f
0

(x) +
r
X

i=1

lj(x)

j!
(y � x)j + L|y � x|� ,

log f
0

(y) � log f
0

(x) +
r
X

i=1

lj(x)

j!
(y � x)j � L|y � x|� .

Define

Bu
f0,r(x, y) =

r
X

i=1

lj(x)

j!
(y � x)j + L|y � x|� ,

Bl
f0,r(x, y) =

r
X

i=1

lj(x)

j!
(y � x)j � L|y � x|� .

Then we have

eB
u
f0,r  1 +Bu

f0,r +
1

2!
(Bu

f0,r)
2 + · · ·+M |Bu

f0,r|
r+1,

eB
l
f0,r � 1 +Bl

f0,r +
1

2!
(Bl

f0,r)
2 + · · ·�M |Bl

f0,r|
r+1.

where

M =
1

(r + 1)!
exp

⇢

sup
x,y2[0,1],x 6=y

✓

�

�

�

�

r
X

j=1

lj(x)

j!
(y � x)j

�

�

�

�

+ L|y � x|�
◆�

.

Note that f
0

is bounded on [0, 1], we consider the convolution on the whole real line by extending f
0

analytically
outside [0, 1]. For � 2 (1, 2], r = 1 and x 2 (0, 1),

�� ⇤ f
0

(x)  f
0

(x)

Z

eB
u
f0,r(x,y)��(y � x)dy

 f
0

(x)

Z

R
��(y � x)[1 + L|y � x|� +M{l2

1

(x)(y � x)2 + 2Ll
1

(x)(y � x)|y � x|� + L2|y � x|2�}]dy.

(S2.2)

Since lj(x)’s are all continuous on [0, 1], there exist finite constants Mj such that |lj |  Mj and |y� x|  1. The
integral in the last inequality in (S2.2) can be bounded by

Z

R
��(y � x)[1 + L|y � x|� +M{M2��

1

|l
1

(x)(y � x)|� + (L2 + 2M
1

)|y � x|�}]dy

Therefore,

�� ⇤ f
0

(x)  f
0

(x){1 + (r
1

|l
1

(x)|� + r
2

)��},

where r
1

= MM2��
1

µ0
� , r

2

= L(1 +ML+ 2MM
1

)µ0
� , and µ0

� = E{|y � x|�}.
In the other direction,

�� ⇤ f
0

(x) � f
0

(x)

Z

��(y � x)[{1� L|y � x|� �M{l2
1

(x)(y � x)2 � 2Ll
1

(x)(y � x)|y � x|� + L2|y � x|2�}]dy.

Thus we achieve expression of �� ⇤ f� in Proposition 2.1.
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For any � > 2 and the integer j such that � 2 (2j, 2j + 2]. We define �(i) ⇤ f as the i-folded convolution of �

with f for any integer i � 1. First we calculate �� ⇤ f
0

(x), �(2)

� ⇤ f
0

(x), . . . , �(j)
� ⇤ f

0

(x), and by Lemma S3.5

we get �� ⇤ fj(x). The calculation of �(i)
� ⇤ f

0

(x) is the same as that of �� ⇤ f
0

(x) except taking the convolution

with �p
i�. The terms �2, �4, . . . , �2j caused by the factors containing |y � x|k for k < � in �(i)

� ⇤ f
0

can be

canceled out by Lemma S3.5. For terms containing |y � x|k for k � �, we take out |y � x|� and bound the rest
by a certain power of |lj(x)| or some constant. Following an induction in Kruijer et al. (2010), we can guarantee
the approximation error of �� ⇤ f� is at the order of O(��).

S2.3 Proof of Theorem 3.1

Theorem 3.1. If ⇧µ has full sup-norm support on C[0, 1] and ⇧� has full support on [0,1), then the L
1

support of the induced prior ⇧ on F contains all densities f
0

which have a finite first moment and are non-zero
almost everywhere on their support.

Proof. Let f
0

be a density with quantile function µ
0

that satisfies the conditions of Theorem 3.1. Observe that
kµ

0

k
1

=
R

1

t=0

|µ
0

(t)| dt =
R1
�1 |z| f

0

(z)dz < 1 since f
0

has a finite first moment, and thus µ
0

2 L
1

[0, 1]. Fix
✏ > 0. We want to show that ⇧{B✏(f0)} > 0, where B✏(f0) = {f : kf � f

0

k
1

< ✏}.

Note that µ
0

/2 C[0, 1], so that P(kµ� µ
0

k1 < ✏) can be zero for small enough ✏. The main idea is to find a
continuous function eµ

0

close to µ
0

in L
1

norm and exploit the fact that the prior on µ places positive mass to
arbitrary sup-norm neighborhoods of eµ

0

. The details are provided below.

Since k�� ⇤ f
0

� f
0

k
1

! 0 as � ! 0, find �
1

such that k�� ⇤ f
0

� f
0

k
1

< ✏/2 for � < �
1

. Pick any �
0

< �
1

. Since
C[0, 1] is dense in L

1

[0, 1], for any � > 0, we can find a continuous function eµ
0

such that kµ
0

� eµ
0

k
1

< �. Now,
kfµ,� � feµ0,�k

1

 C kµ� eµ
0

k
1

/� for a global constant C. Thus, for � = ✏ �
0

/4,

�

fµ,� : �
0

<� < �
1

, kµ� eµ
0

k1 < �
 

⇢
�

fµ,� : kf
0

� fµ,�k
1

< ✏
 

,

since kf
0

� fµ,�k
1

< kf
0

� fµ0,�k
1

+ kfµ0,� � feµ0,�k
1

+ kfeµ0,� � fµ,�k
1

and fµ0,� = �� ⇤ f
0

. Thus, ⇧{B✏(f0)} >
⇧µ(kµ� eµ

0

k1 < �)⇧�(�0

< � < �
1

) > 0, since ⇧µ has full sup-norm support and ⇧� has full support on
[0,1).

S2.4 Proof of Theorem 3.2

In this section we will give a detailed proof for the adaptive posterior contraction rate result for the NL-LVM
models.

Theorem 3.2. If f
0

satisfies Assumptions F1 and F2 and the priors ⇧µ and ⇧� are as in Assump-
tions P1 and P2 respectively, the best obtainable rate of posterior convergence relative to Hellinger metric h
is

✏n = n� �
2�+1 (log n)t, (S2.3)

where t = �(2 _ q)/(2� + 1) + 1.

Proof. Following Ghosal et al. (2000), to obtain the posterior convergence rate we need to find sequences ✏̄n,e✏n !
0 with nmin{✏̄2n,e✏2n} ! 1 such that there exist constants C

1

, C
2

, C
3

, C
4

> 0 and sets Fn ⇢ F so that,

logN(✏̄n,Fn, d)  C
1

n✏̄2n, (S2.4)

⇧(Fc
n)  C

3

exp{�ne✏2n(C2

+ 4)}, (S2.5)

⇧

✓

fµ,� :

Z

f
0

log
f
0

fµ,�
 e✏2n,

Z

f
0

log

✓

f
0

fµ,�

◆

2

 e✏2n
◆

� C
4

exp{�C
2

ne✏2n}. (S2.6)

Then we can conclude that for ✏n = max{✏̄n,e✏n} and su�ciently large M > 0, the posterior probability

⇧n(fµ,� : d(fµ,�, f0) > M✏n|Y1

, . . . , Yn) ! 0 a.s.Pf0 ,
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where Pf0 denotes the true probability measure whose the Radon-Nikodym density is f
0

. To proceed, we consider
the Gaussian process µ ⇠ WA given A, with A satisfying Assumption P1.

We will first verify (S2.6) along the lines of Ghosal & van der Vaart (2007). Recall f� is defined as from (6), by
Lemma S3.7 we guarantee that f� is a well-defined density. Denote by µ� = F�1

� the quantile function of f� ,
then we have fµ� ,� = �� ⇤ f� . Note that

h2(f
0

, fµ,�) - h2(f
0

, fµ� ,�) + h2(fµ� ,�, fµ,�). (S2.7)

Under Assumptions F1 and F2 and by Lemma S3.8, one obtains

h2(f
0

, fµ� ,�) 
Z

f
0

log

✓

f
0

fµ� ,�

◆

- O(�2�). (S2.8)

From Lemma S3.1 and the following remark, we obtain

h2(fµ� ,�, fµ,�) -
kµ� µ�k21

�2

. (S2.9)

From Lemma 8 of Ghosal & van der Vaart (2007), one has

Z

f
0

log

✓

f
0

fµ,�

◆i

 h2(f
0

, fµ,�)

✓

1 + log

�

�

�

�

f
0

fµ,�

�

�

�

�

1

◆i

, (S2.10)

for i = 1, 2.

From (S2.7)-(S2.10), for any b � 1 and e✏2n = �2�
n ,

�

� 2 [�n, 2�n], kµ� µ�k1 - ��+1

n

 

⇢
⇢

Z

f
0

log
f
0

fµ,�
- �2�

n ,

Z

f
0

log

✓

f
0

fµ,�

◆

2

- �2�
n

�

.

Since µ� 2 C�+1[0, 1], from Section 5.1 of van der Vaart & van Zanten (2009),

⇧µ(kµ� µ�k1  2�n) � C
4

exp

⇢

� C
5

(1/�n)
1

�+1 log

✓

1

�n

◆

2_q�

(C
6

/�n)
(p+1)/(�+1),

for �n ! 0 and constants C
4

, C
5

, C
6

> 0. Letting �n = ��+1

n , we obtain

⇧µ(kµ� µ�k1  2�n) � exp

⇢

� C
7

✓

1

�n

◆

log

✓

1

��+1

n

◆

2_q�

,

for some constant C
7

> 0. Since � ⇠ IG(a�, b�), we have

⇧�(� 2 [�n, 2�n]) =
ba�
�

�(a�)

Z

2�n

�n

x�(a�+1)e�b�/xdx

� ba�
�

�(a�)

Z

2�n

�n

e�2b�/xdx

� ba�
�

�(a�)
�n exp{�b�/�n}

� exp{�C
8

/�n},

for some constant C
8

> 0. Hence

⇧{� 2 [�n, 2�n], kµ� µ�k1 - ��+1

n } � exp

⇢

� C
7

✓

1

�n

◆

log

✓

1

��+1

n

◆

2_q�

exp{�C
8

/�n}

� exp

⇢

� 2C
9

✓

1

�n

◆

log

✓

1

��+1

n

◆

2_q�

.



Statistical Guarantees for Transformation Based Models

Then (S2.6) will be satisfied with e✏n = n��/(2�+1) logt1(n), where t
1

= �(2_ q)/(2�+1) and some C
9

> 0. Next
we construct a sequence of subsets Fn such that (S2.4) and (S2.5) are satisfied with ✏̄n = n��/(2�+1) logt2 n and
e✏n for some global constant t

2

> 0.

Now we construct the sieves for F . Letting Ha
1

denote the unit ball of RKHS of the Gaussian process with
rescaled parameter a and B

1

denote the unit ball of C[0, 1] and given positive sequences Mn, rn, define

Bn = [a<rn(MnHa
1

) + �̄nB1

,

as in van der Vaart & van Zanten (2009), with �̄n = ✏̄nln/K1

,K
1

= 2(2/⇡)1/2 and let

Fn = {fµ,� : µ 2 Bn, ln < � < hn}.

First we need to calculate N(✏̄n,Fn, k·k
1

). Observe that for �
2

> �
1

> �
2

/2,

kfµ1,�1 � fµ2,�2k
1


✓

2

⇡

◆

1/2 kµ
1

� µ
2

k1
�
1

+
3(�

2

� �
1

)

�
1

.

Taking n = min{✏̄n/6, 1} and �n
m = ln(1 + n)m,m � 0, we obtain a partition of [ln, hn] as ln = �n

0

< �n
1

<
· · · < �n

mn�1

< hn  �n
mn

with

mn =

✓

log
hn

ln

◆

1

log(1 + n)
+ 1. (S2.11)

One can show that 3(�n
m � �n

m�1

)/�n
m�1

= 3n  ✏̄n/2. Let {eµn
k , k = 1, . . . , N(�̄n, Bn, k·k1)} be a �̄n-net of Bn.

Now consider the set

{(eµn
k ,�

n
m) : k = 1, . . . , N(�̄n, Bn, k·k1), 0  m  mn}. (S2.12)

Then for any f = fµ,� 2 Fn, we can find (eµn
k ,�

n
m) such that kµ� eµn

kk1 < �̄n. In addition, if one has � 2
(�n

m�1

,�n
m], then

�

�fµ,� � fµn
k ,�

n
m

�

�

1

 ✏̄n.

Hence the set in (S2.12) is an ✏̄n-net of Fn and its covering number is given by

mnN(�̄n, Bn, k·k1).

From the proof of Theorem 3.1 in van der Vaart & van Zanten (2009), for any Mn, rn with rn > 0, we obtain

logN(2�̄n, Bn, k·k1)  K
2

rn

✓

log

✓

Mn

�̄n

◆◆

2

. (S2.13)

Again from the proof of Theorem 3.1 in van der Vaart & van Zanten (2009), for rn > 1 and for M2

n >
16K

3

rn(log(rn/�̄n))2, we have

P(WA /2 Bn) 
K

4

rpne
�K5rn log

q rn

K
5

logq rn
+ exp{�M2

n/8}, (S2.14)

for constants K
3

,K
4

,K
5

> 0.

Next we calculate P(� /2 [ln, hn]). Observe that

P(� /2 [ln, hn]) = P(��1 < h�1

n ) + P(��1 > l�1

n )


1
X

k=↵�

e�b�h
�1
n (b�h�1

n )k

k!
+

ba�
�

�(a�)

Z 1

l�1
n

e�b�x/2dx

 e�a� log(hn) +
ba�
�

�(a�)
e�b�l

�1
n /2. (S2.15)
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Thus with hn = O(exp{n1/(2�+1)(log n)2t1}), ln = O(n�1/(2�+1)(log n)�2t1), rn = O(n1/(2�+1)(log n)2t1),Mn =
O(n1/(2�+1)(log n)t1+1), (S2.14) and (S2.15) implies

⇧(Fc
n) = exp{�K

6

ne✏2n},

for some constant K
6

> 0, which guarantees that (S2.5) is satisfied with e✏n = n��/(2�+1)(log n)t1 .

Also with ✏̄n = n��/(2�+1)(log n)t1+1, it follows from (S2.11) and (S2.13) that

logN(✏̄n,Fn, k·k
1

)  K
7

n1/(2�+1)(log n)2t1+2,

for some constant K
7

> 0. Hence max{✏̄n,e✏n} = n��/(2�+1)(log n)t1+1.

S2.5 Proof of Theorem 4.1

In this section, we present the detailed proof of the high probability bound for KL divergence between the true
posterior and its ↵-VB approximation in the case of the GP-IVI.

Theorem 4.1. Under assumptions B1 through B5 it hold that m⇤
n(Qn) = minq2Qn

�

D[q||p(· | Y (n))]
 

is bounded in probability with respect to the data generating distribution. Formally, given any " > 0, there

exists M", N" > 0 such that for n � N", we have P(n)
✓⇤ (m⇤

n(Qn) > M")  ".

The objective m⇤
n(Qn) can be bounded above by D[q||p(Y (n) | ✓)] for any q 2 Qn. Choosing q as a

particular univariate Gaussian centered at the true parameter with variance satisfying our assumptions B1-B5

allows us to bound the KL divergence between the true posterior p(Y (n) | ✓) in high P(n)
✓⇤ -probability.

Proof. It follows from the definition of m⇤
n(Qn) that for any q 2 Qn

m⇤
n(Qn)  D(q||p(· | Y (n))).

Choose µn to be the quantile function of the distribution N(✓⇤,�2

n). Define the variational distribution

qn(✓) =

Z

��(✓ � µn(u))du,

where �n satisfies assumption B2. By change of measure,
Z

��(✓ � µn(u))du =

Z

��(✓ � t)��n(t� ✓⇤)dt = N(✓; ✓⇤,�2 + �2

n).

Therefore qn(✓) = N(✓; ✓⇤,�2 + �2

n) 2 Qn. Denote by En the mean respect to qn. Expanding D(qn||p(Y (n) | ✓)),

En



log
qn(✓)

p(Y (n) | ✓)(✓)

�

= En[log qn] + En[U(✓)] + logm(Y (n))� En [Ln(✓, ✓
⇤)] ,

where Ln(✓, ✓⇤) =
Pn

i=1

`i(✓, ✓⇤). Since the sum of Op(1) terms is Op(1), it su�ces to show that each of the
terms in the above sum is Op(1). The first term En[log qn], the di↵erential entropy of qn, is a constant and is

Op(1). A straight forward application of Markov’s inequality along with the fact that E(n)
✓⇤ [m(Y (n))] = 1 shows

that logm(Y (n)) is Op(1).

Next, expand each of the functions D(✓⇤||✓), µ
2

(✓⇤||✓), and U(✓) using a multivariate Taylor expansion around
✓⇤. Applying assumptions B4 and B5 shows

En[U(✓)]  C
1

(�2 + �2

n),

En[µ2

(✓⇤||✓)]  C
2

(�2 + �2

n), (S2.16)

En[D(✓⇤||✓)]  Cu(�
2 + �2

n), (S2.17)

En[D(✓⇤||✓)] � C`(�
2 + �2

n). (S2.18)
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Markov’s inequality shows that U(✓) is Op(1). We will use Chebychev’s inequality to show En [
Pn

i=1

`i(✓, ✓⇤)] is

Op(1). Given " > 0, choose � =
⇥

C
2

c
0

/("C`)2
⇤

1/2
. Using (S2.16)-(S2.18) and noting that �E(n)

✓⇤ {Ln(✓, ✓⇤)} =
nD(✓⇤||✓), we have

P(n)
✓⇤

�

En[Ln(✓, ✓
⇤)]  �Cu(1 + �)n(�2 + �2

n)
 

 P(n)
✓⇤ {En[Ln(✓, ✓

⇤)]  �(1 + �)nEn[D(✓⇤||✓)]}

 P(n)
✓⇤

⇢

1p
n
En[Ln(✓, ✓

⇤)� E(n)
✓⇤ {Ln(✓

⇤, ✓)}]  ��
p
nEn[D(✓⇤||✓)]

�


Var(n)✓⇤ (En[`1(✓, ✓⇤)])

�2n (En[D(✓⇤||✓)])2
 En[µ2

(✓⇤||✓⇤)]
�2n (En[D(✓⇤||✓)])2

 C
2

(�2 + �2

n)

�2nC`(�2 + �2

n)
2

 C
2

�2nC2

` (�
2 + �2

n)
 C

2

�2nC2

` �
2

n

.

Applying assumption B2 we have c�1/2
0

n�1/2  �n  n�1/2. This gives

P(n)
✓⇤

⇢

Z

Ln(✓, ✓
⇤)qn(✓)d✓  �2Cu(1 + (C

2

c
0

/("C2

` ))
1/2)

�

 P(n)
✓⇤

⇢

Z

Ln(✓, ✓
⇤)qn(✓)d✓  �Cu(1 + �)n(�2 + �2

n)

�

 ".

Thus En[Ln(✓, ✓⇤)] is Op(1). This completes the proof.

S2.6 Proof of Theorem 4.2

In this section, we present the detailed proof of the Bayesian risk bound for ↵-variational inference in the case
of the GP-IVI model. We also present a proof of the corollary for the Hellinger risk bound. The main theorem
and the lemmas are restated here for convenience. Our risk bound is based of the following theorem,

Theorem S2.1 (Yang et al. (2020)). For any ⇣ 2 (0, 1), it holds with P(n)
✓⇤ -probability at least (1 � ⇣) that for

any probability measure q 2 Q with q ⌧ p✓,

Z

1

n
D↵[p

(n)
✓ ||p(n)✓⇤ ]bq(✓)d✓  ↵ (q) + log(1/⇣)

n(1� ↵)
.

The GP-IVI risk bound is stated as follows.

Theorem 4.2. Assume bqµ,� satisfies (14) and bqµ,� ⌧ p✓. It holds with P(n)
✓⇤ -probability at least 1 � 2/

[(D � 1)2(1 + n�2)n"2] that,

Z

1

n
D(n)

↵ (✓, ✓⇤)bqµ,�(✓)d✓  D↵

1� ↵
"2 +

1

n(1� ↵)
log
n

P✓ [Bn(✓
⇤, ")]�1

o

+O(n�1).

The desired risk bound follows from bounding the right hand side of Theorem 3.2 of Yang et al. (2020)

↵

n(1� ↵)
 (qµ,�) :=

↵

n(1� ↵)



Z

qµ,�(✓) log
p(Y (n) | ✓⇤)
p(Y (n) | ✓)

d✓ +
1

↵
D(qµ,�||p✓)

�

in high P(n)
✓⇤ -probability in terms of the local Bayesian complexity logP✓(Bn(✓⇤, ")). By choosing a particular

member of the variational family we can bound both the likelihood ratio integral as well as the KL divergence
between the prior and the variational approximation. The relation between the variational distribution and the
local Bayesian complexity come from the KL divergence term.

Proof. We will construct a special choice of µ as follows. Denote p✓(✓) = f
0

(✓). Let Bn(✓⇤, ") be as in (12).
Define the truncated densities

ef
0

(t) =
f
0

(t)IBn(✓⇤,")(t)
R

Bn(✓⇤,")
f
0

(u)du
=

f
0

(t)IBn(✓⇤,")(t)

P✓(Bn(✓⇤, "))
, ef�(t) =

f�(t)IBn(✓⇤,")(t)
R

Bn(✓⇤,")
f�(u)du

,
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where f� is constructed by procedure (6) such that k��⇤f��f
0

k1 = O(��) along with its associated distribution
functions

eF
0

(t) =

Z

(�1,t]\Bn(✓⇤,")

ef
0

(t)dt, eF�(t) =

Z

(�1,t]\Bn(✓⇤,")

ef�(t)dt.

Define the quantile function of eF� as eµ(t) = eF�1

� (t). This can be used to define the variational density

q ef� ,�(✓) =

Z

[0,1]

��(✓ � eµ(⌘))d⌘ =

Z 1

�1
��(✓ � t) ef�(t)dt = �� ⇤ ef�(✓),

with � > 0 a bandwidth that will be specified later in the proof. The main tool for the proof will be from
Proposition 2.1

q ef� ,�(✓) = �� ⇤ ef�(✓)  ef
0

(✓)(1 +D(✓)O(��)). (S2.19)

Denote MD = supBn(✓⇤,") D(✓) and K�(�) = 1+MDO(��). We will now bound the model-fit term. Denote the
random variable

H(Y (n), ef� ,�) =

Z

q ef� ,�(✓) log[p(Y
(n) | ✓⇤)/p(Y (n) | ✓)]d✓.

The mean and variance (with respect to the data generating distribution) of the model-fit term are bounded by
applying (S2.19),

E(n)
✓⇤ [H(Y (n), ef� ,�)] =

Z

D[p(Y (n) | ✓⇤)||p(Y (n) | ✓)]q ef� ,�(✓)d✓


Z

D[p(Y (n) | ✓⇤)||p(Y (n) | ✓)] ef
0

(✓)(1 +D(✓)O(��))d✓

 K�(�)

Z

B(✓⇤,")

D[p(Y (n) | ✓⇤)||p(Y (n) | ✓)] f
0

(✓)

P✓[Bn(✓⇤, ")]
d✓

 K�(�)n"
2,

and

Var(n)✓⇤ [H(Y (n), eµ,�)] 
Z

V [p(Y (n) | ✓⇤)||p(Y (n) | ✓)]q ef� ,�(✓)d✓


Z

V [p(Y (n) | ✓⇤)||p(Y (n) | ✓)] ef
0

(✓)(1 +D(✓)O(��))d✓

 K�(�)

Z

B(✓⇤,")

V [p(Y (n) | ✓⇤)||p(Y (n) | ✓)] f
0

(✓)

P✓[Bn(✓⇤, ")]
d✓

 K�(�)n"
2.

It follows from Chebyshev’s inequality that with P(n)
✓⇤ -probability at least 1� 1/[(D � 1)2K�(�)n"2]

Z

q ef� ,�(✓) log



p(Y (n) | ✓⇤)
p(Y (n) | ✓)

�

d✓  DK�(�)n"
2.

Next we will bound the regularization in terms of the local Bayesian complexity. Using (S2.19) we can bound
the KL divergence,

D[q ef� ,�||p✓] =
Z

q ef� ,�(✓) log

"

q ef� ,�(✓)

f
0

(✓)

#

d✓ 
Z

log

"

ef
0

(✓)(1 +O(D(✓)��))

f
0

(✓)

#

ef
0

(✓)(1 +O(D(✓)��))d✓.
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Expanding ef
0

(✓) and making use of the convention IBn(✓⇤,")(✓) log(IBn(✓⇤,")(✓)) = 0 for ✓ /2 Bn(✓⇤, ") we have

Z

log

"

f
0

(✓)IBn(✓⇤,")(1 +O(D(✓)��))

f
0

(✓)P✓[Bn(✓⇤, ")]

#

f
0

(✓)IBn(✓⇤,")

P✓[Bn(✓⇤, ")]
(1 +O(D(✓)��))d✓

=

Z

Bn(✓⇤,")

log



(1 +O(D(✓)��))

P✓[Bn(✓⇤, ")]

�

f
0

(✓)

P✓[Bn(✓⇤, ")]
(1 +O(D(✓)��))d✓

 K�(�) log



K�(�)

P✓(Bn(✓⇤, "))

�

Z

Bn(✓⇤,")

f
0

(✓)

P✓[Bn(✓⇤, ")]
d✓

= K�(�) log



K�(�)

P✓(Bn(✓⇤, "))

�

.

Combining the bounds from both parts, we have with probability at least 1� 1/[(D � 1)2K�(�)n"2] that

 (q ef� ,�)  DK�(�)n"
2 + ↵�1K�(�) logK�(�) + ↵�1K�(�) log

�

P✓[Bn(✓
⇤, ")]�1

 

.

Choosing ⇣ = 1/[(D� 1)2K�(�)n"2]. It follows from the union bound for probabilities, we have with probability
at least 1� 2/[(D � 1)2K�(�)n"2] that

Z

1

n
D(n)

↵ (✓, ✓⇤)bqµ,�(✓)d✓ 
↵DK�(�)n"2 +K�(�) logK�(�) +K�(�) log

�

P✓[Bn(✓⇤, ")]�1

 

+ log((D � 1)2K�(�)n"2)

n(1� ↵)

 K�(�)

✓

D↵

1� ↵
"2 +

1

n(1� ↵)
log
�

P✓[Bn(✓
⇤, ")]�1

 

+O(n�1)

◆

.

Recall that K�(�) = 1 +O(��). Choosing � = n�2/� gives

Z

1

n
D(n)

↵ (✓, ✓⇤)bqµ,�(✓)d✓  K�(�)

✓

D↵

1� ↵
"2 +

1

n(1� ↵)
log
�

P✓[Bn(✓
⇤, ")]�1

 

+O(n�1)

◆

 D↵

1� ↵
"2 +

1

n(1� ↵)
log
�

P✓[Bn(✓
⇤, ")]�1

 

+O(n�1) +O(n�2).

Corollary 4.1. Suppose the prior density p✓ satisfies Assumption A1 and bq satisfies (14). It holds with
probability tending to one as n ! 1 that,

⇢

Z

h2(p(· | ✓), p(· | ✓⇤))bqµ,�(✓)d✓
�

1/2

 O(n�1),

demonstrating that the risk bound is parametric even when a flexible class of variational approximation is used.

Proof. For IID data n�1D(n)
↵ (✓, ✓⇤) = D↵[p✓||p✓⇤ ]. Applying Theorem 4.2 with " = n�1 and Assumption A1

yields,

Z

1

n
D(n)

↵ (✓, ✓⇤)bqµ,�(✓)d✓  D↵

1� ↵
"2 +

1

n(1� ↵)
log
�

P✓[Bn(✓
⇤, ")]�1

 

+O(n�1)

 D↵� 1

n2(1� ↵)
+O(n�1) = O(n�2) +O(n�1).

Combining the above with the fact that max{1, (1� ↵)�1↵}h2(p, q)  D↵[p||q] competes the proof.
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S3 Auxiliary results

In this section, we summarize results used in the proofs of main theorems in the main document. First to
guarantee that the model (2) leads to the optimal rate of convergence, we start from deriving sharp bounds for
the Hellinger distance between fµ1,�1 and fµ2,�2 for µ

1

, µ
2

2 C[0, 1] and �
1

,�
2

> 0. We summarize the result in
the following Lemma S3.1.

Lemma S3.1. For µ
1

, µ
2

2 C[0, 1] and �
1

,�
2

> 0,

h2(fµ1,�1 , fµ2,�2)  1�

s

2�
1

�
2

�2

1

+ �2

2

exp

⇢

�
kµ

1

� µ
2

k21
4(�2

1

+ �2

2

)

�

. (S3.1)

Proof. Note that by Hölder’s inequality,

fµ1,�1(y)fµ2,�2(y) �
⇢

Z

1

0

p

��1(y � µ
1

(x))
p

��2(y � µ
2

(x))dx

�

2

.

Hence,

h2(fµ1,�1 , fµ2,�2) 
Z



Z

1

0

��1(y � µ
1

(x))dx+

Z

1

0

��2(y � µ
2

(x))dx

� 2

Z

1

0

p

��1(y � µ
1

(x))
p

��2(y � µ
2

(x))dx

�

dy.

By changing the order of integration (applying Fubini’s theorem since the function within the integral is jointly
integrable) we get

h2(fµ1,�1 , fµ2,�2) 
Z

1

0

h2(fµ1(x),�1
, fµ2(x),�2

)dx

=

Z

1

0



1�

s

2�
1

�
2

�2

1

+ �2

2

exp

⇢

� (µ
1

(x)� µ
2

(x))2

4(�2

1

+ �2

2

)

��

dx

 1�

s

2�
1

�
2

�2

1

+ �2

2

exp

⇢

�
kµ

1

� µ
2

k21
4(�2

1

+ �2

2

)

�

.

Remark S3.2. When �
1

= �
2

= �, h2(fµ1,�, fµ2,�)  1 � exp
�

kµ
1

� µ
2

k21 /8�2

 

, which implies that

h2(fµ1,�, fµ2,�) - kµ
1

� µ
2

k21 /�2.

Remark S3.3. The standard inequality h2(fµ1,�1 , fµ2,�2)  kfµ1,�1 � fµ2,�2k
1

relating the Hellinger distance to
the total variation distance leads to the cruder bound

h2(fµ1,�1 , fµ2,�2)  C
1

kµ
1

� µ
2

k1
(�

1

^ �
2

)
+ C

2

|�
2

� �
1

|
(�

1

^ �
2

)
,

which is linear in kµ
1

� µ
2

k1. This bound is less sharp than what is obtained in Lemma S3.1 and does not
su�ce for obtaining the optimal rate of convergence.

In order to apply Lemma 8 in Ghosal & van der Vaart (2007) to control the Kullback–Leibler divergence between
the true density f

0

and the model fµ,�, we derive an upper bound for log kf
0

/fµ,�k1 in Lemma S3.4.

Lemma S3.4. If f
0

satisfies Assumption F2,

log

�

�

�

�

f
0

fµ,�

�

�

�

�

1
 C +

kµ� µ
0

k21
�2

(S3.2)

for some constant C > 0.
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Proof. Note that

fµ,�(y) =
1p
2⇡�

Z

1

0

exp

⇢

� (y � µ(x))2

2�2

�

dx

� 1p
2⇡�

Z

1

0

exp

⇢

� (y � µ
0

(x))2

�2

�

dx exp

⇢

�
kµ� µ

0

k21
�2

�

� C��/
p
2

⇤ f
0

(y) exp

⇢

�
kµ� µ

0

k21
�2

�

� Cf
0

(y) exp

⇢

�
kµ� µ

0

k21
�2

�

,

where the last inequality follows from Lemma 6 of Ghosal & van der Vaart (2007) since f
0

is compactly supported
by Assumption F2. This provides the desired inequality.

Lemma S3.5. Let j � 0 be the integer such that � 2 (2j, 2j + 2], and the sequence of fj is constructed by the

procedure in (6). Then we have f� =
Pj

i=0

(�1)i
�

j+1

i+1

�

�(i)
� ⇤ f

0

, where �(i)
� ⇤ f

0

= �� ⇤ · · · ⇤ �� ⇤ f
0

, the i-fold
convolution of �� with f

0

.

Proof. Consider fj constructed by (6). When j = 1, f
1

= 2f
0

��� ⇤f0, so the form holds. By induction, suppose
this form holds for j > 1, then

fj+1

= f
0

� (�� ⇤ fj � fj)

= f
0

+
j
X

i=0

(�1)i+1

✓

j + 1

i+ 1

◆

�(i+1)

� ⇤ f
0

+
j
X

i=0

(�1)i
✓

j + 1

i+ 1

◆

�(i)
� ⇤ f

0

= (j + 2)f
0

+
j+1

X

i=1

(�1)i
✓

j + 1

i+ 1

◆

�(i)
� ⇤ f

0

+
j
X

i=1

(�1)i
✓

j + 1

i

◆

�(i)
� ⇤ f

0

= (j + 2)f
0

+
j
X

i=1

(�1)i
✓✓

j + 1

i+ 1

◆

+

✓

j + 1

i

◆◆

�(i)
� ⇤ f

0

+ (�1)j+1�(i+1)

� ⇤ f
0

= (j + 2)f
0

+
j
X

i=1

(�1)i
✓

j + 2

i+ 1

◆

�(i)
� ⇤ f

0

+ (�1)j+1�(i+1)

� ⇤ f
0

=
j+1

X

i=0

(�1)i
✓

j + 2

i+ 1

◆

�(i)
� ⇤ f

0

.

It holds for j + 1, which completes the proof.

Lemma S3.6. Let f
0

satisfy Assumptions F1 and F2. With A� = {x : f
0

(x) � �H}, we have

Z

Ac
�

f
0

(x)dx = O(�2�),

Z

Ac
�

�� ⇤ fj(x)dx = O(�2�), (S3.3)

for all non-negative integer j, su�ciently small � and su�ciently large H.

Proof. Under Assumption F2 there exists (a, b) ⇢ [0, 1] such that Ac
� ⇢ [0, a) [ (b, 1] if we choose � su�ciently

small, so that f
0

(x)  �H for x 2 Ac
�. Therefore,

R

Ac
�
f
0

(x)  �H  O(�2�) if we choose H � 2�. Using

Proposition 2.1,

Z

Ac
�

�� ⇤ fj(x)dx =

Z

Ac
�

f
0

(x){1 +O(D(x)��)}  O(�H).

With bounded D(x) and H � 2� it is easy to bound the second integral in (S3.3) by O(�2�).
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Lemma S3.7. Suppose f
0

satisfies Assumptions F1 and F2. For � > 2 and the integer j such that � 2
(2j, 2j + 2], f� is a density function.

Proof. To show f� is a density function, it su�ces to show f� is non-negative, since a simple calculation shows
that

R

f� = 1 for j � 0. Following the proof of Lemma 2 in Kruijer et al. (2010), we treat log f
0

as a function in
C2[0, 1] and obtain the same form of �� ⇤ f

0

as in (S2.1). For small enough � we can find ⇢
1

2 (0, 1) very close
to 0 such that

�� ⇤ f
0

(x) = f
0

(x)(1 +O(D(2)(x)�2)) < f
0

(x)(1 + ⇢
1

),

where D(2) contains |l
1

(x)| and |l
2

(x)| to certain power, so D(2) is bounded. Then we have

f
1

(x) = 2f
0

(x)�K�f0(x) > 2f
0

(x)� f
0

(x)(1 + ⇢
1

) = f
0

(x)(1� ⇢
1

).

Then we treat log f
0

as a function with � = 4, j = 1. Similarly, we can get

�� ⇤ f
1

(x) = f
0

(x)(1 +O(D(4)(x)�4)),

where D(4) contains |l
1

(x)|, . . . , |l
4

(x)|. We can find 0 < ⇢
2

< ⇢
1

such that �� ⇤ f
1

(x) < f
0

(x)(1 + ⇢
2

), then can
get

f
2

(x) = f
0

(x)� (�� ⇤ f
1

(x)� f
1

(x)) > f
0

(x)(1� ⇢
1

� ⇢
2

) > f
0

(x)(1� 2⇢
1

).

Continuing this procedure, we can get fj(x) > f
0

(x)(1� j⇢
1

) with su�ciently small � and 1� j⇢
1

2 (0, 1) and
it is close to 1. Then we show fj is non-negative.

Lemma S3.8. Let f
0

satisfy Assumptions F1 and F2 and let j be the integer such that � 2 (2j, 2j + 2]. Then
we show that the density f� obtained by (6) satisfies

Z

f
0

(x) log
f
0

(x)

�� ⇤ f�(x)
= O(�2�), (S3.4)

for su�ciently small � and all x 2 [0, 1].

Proof. Again consider the set A� = {x : f
0

(x) � �H} with arbitrarily large H. We separate the Kullback–Leibler
divergence into

Z

[0,1]

f
0

log
f
0

�� ⇤ f�
=

Z

[0,1]\A�

f
0

log
f
0

�� ⇤ f�
+

Z

[0,1]\Ac
�

f
0

log
f
0

�� ⇤ f�


Z

A�

(f
0

� �� ⇤ f�)2

�� ⇤ f�
+

Z

Ac
�

(�� ⇤ f� � f
0

) +

Z

Ac
�

f
0

log
f
0

�� ⇤ f�
. (S3.5)

Under Assumption F2 and by Remark 3 in Ghosal et al. (1999), for small enough � there exists a constant C
such that �� ⇤ f

0

� Cf
0

for all x 2 [0, 1]. Especially, f
0

satisfies �� ⇤ f
0

� f
0

/3 for x 2 Ac
�. Also in the proof of

Lemma S3.7 we can find ⇢ 2 (0, 1) such that f� > ⇢f
0

. Then, on set A� with su�ciently small �, we have

�� ⇤ fj � ⇢�� ⇤ f
0

� Kf
0

,

where K = min{⇢/3, ⇢C}. Applying (S2.1), the first integral on the r.h.s. of (S3.5) can be bounded by

Z

A�

(f
0

� �� ⇤ fj)2

�� ⇤ fj

Z

A�

[f
0

(x)� f
0

(x)(1 +O(D(x)��))]2

Kf
0

(x)

-
Z

A�

f
0

(x)O(D2(x)�2�) = O(�2�).

To bound the second integral of r.h.s in (S3.5), according to Remark 3 in Ghosal et al. (1999) we get �� ⇤ fj �
⇢f

0

/3, then we can find a constant C < 1 such that �� ⇤ fj � Cf
0

. The second and third term in (S3.5) can be
bounded by O(�2�) based on Lemma S3.6.
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Lemma S3.9. Let Ha
1

denote the unit ball of RKHS of the Gaussian process with rescaled parameter a and B
1

be the unit ball of C[0, 1]. For r > 1, there exists a constant K, such that for ✏ < 1/2,

logN(✏,[a2[0,r]Ha
1

, k·k1)  Kr

✓

log
1

✏

◆

2

. (S3.6)

Proof. Since we can write any element of Ha
1

as a function of Re(z) by Lemma 4.5 in van der Vaart & van
Zanten (2009), and an ✏-net denoted by Fa over Ha

1

is constructed through a finite set of piece-wise polynomial
functions, and according to Lemma 4.4 and Lemma 4.5 in Bhattacharya et al. (2014), Fa also forms an ✏-net
over Hb

1

as long as a is su�ciently close to b. Thus we can find one set � = {ai, i = 1, . . . , k} with k = brc + 1
and ak = r, such that for any b 2 [0, r] there exists some ai satisfying |b � ai|  1, so that [ikFai forms an
✏-net over [arHa

1

. Since the covering number of [ikFai is bounded by summation of covering number of Fai ,
we obtain

logN
�

✏,[a2[0,r]Ha
1

, k · k1
�

 log

✓ k
X

i=1

#(Fai)

◆

 log(k ·#(Fr))  Kr

✓

log
1

✏

◆

2

.

Here we write #(A) to denote the cardinality of any arbitrary set A. To prove the second inequality above,
note that the piece-wise polynomials are constructed on the partition over [0, 1], denoted by [imBi, where
Bi’s are disjoint interval with length R that can be considered as a non-increasing function of a, so the total
number of polynomials is non-decreasing in a. Also we find that when building the mesh grid of the coe�cients
of polynomials in each Bi, both the approximation error and tail estimate are invariant to interval length R,
therefore we have #(Fa)  #(Fb) if a  b, for a, b 2 [0, r].

Remark S3.10. With larger a we need a finer partition on [0, 1] while the grid of coe�cients of piece-wise
polynomial remains the same except the range and the meshwidth will change together along with a. Since we
can see the element h of RKHS ball as a function of it and with Cauchy formula we can bound the derivatives
of h by C/Rn, where |h|2  C2.

S4 GP-IVI Algorithm

In this section we outline an algorithm to train GP-IVI based on the Karhunen–Loéve representation of a
Gaussian process; details on the Karhunen–Loéve representation of a stochastic process can be found in either
Jin (2014) or Le Mâıtre & Knio (2010).

S4.1 Karhunen–Loéve representation of a Gaussian process

For a mean zero Guassian process X(t), 0  t  1, with covariance function

K(s, t) = E[X(t)X(s)], for 0  s, t  1.

The Karhunen–Loéve expansion is given by

X(t) =
1
X

k=1

p

�kek(t)⇠k,

where {(�k, ek)} are the eigenvalue eigenfunction pairs to the Fredholm integral equation

�kek(t) =

Z

1

0

K(s, t)ek(s)ds, for 0  t  1,

and ⇠k are IIDN(0, 1) random variables. For computational purposes, we need work with the finite approximation

XN (t) =
N
X

k=1

p

�k⇠kek(t).
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S4.2 Algorithm

Recall the GP-IVI family consists of distributions of the form,

QGP =

⇢

qµ,�(✓) =

Z

1

0

��(✓ � µ(⌘))d⌘ | µ 2 C[0, 1], � > 0

�

.

Substituting in the truncated Karhunen–Loéve expansion in place of µ(⌘) we can equivalently define qµ,�(✓) =
E⌘[N(✓;µ(⌘),�2)] using the reparameterization trick

✓ =
N
X

k=1

p

�k⇠kek(⌘) + �" (S4.1)

qµ,�(✓) = E⌘

2

4exp

8

<

:

� 1

2�2

 

✓ �
N
X

k=1

p

�k⇠kek(⌘)

!

2

9

=

;

3

5 , (S4.2)

where ⇠k
iid⇠ N(0, 1) for 1  k  N , " ⇠ N(0, 1), and ⌘ ⇠ U(0, 1). This allows us to define the joint ELBO in

(�, ⇠
1

, . . . , ⇠N ),

ELBO(�, ⇠
1

, . . . , ⇠N ) = Eqµ,�(✓)[log p(✓, Y
(n))� log qµ,�(✓)] (S4.3)

and its gradient

r�,⇠1,...,⇠NELBO(�, ⇠
1

, . . . , ⇠N ).

At this point we can compute the ELBO and its gradient using Monte Carlo techniques and maximize the ELBO
using a gradient-based optimization technique.
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